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A procedure to improve the convergence rate for affine registrationmethods of medical brain images when the images differ greatly
from the template is presented.Themethodology is based on a histogrammatching of the source imageswith respect to the reference
brain template before proceeding with the affine registration. The preprocessed source brain images are spatially normalized to a
template using a general affinemodel with 12 parameters. A sum of squared differences between the source images and the template
is considered as objective function, and a Gauss-Newton optimization algorithm is used to find the minimum of the cost function.
Using histogram equalization as a preprocessing step improves the convergence rate in the affine registration algorithm of brain
images as we show in this work using SPECT and PET brain images.

1. Introduction

Emission computed tomography (ECT) has been widely
employed in biomedical research and clinical medicine dur-
ing the last three decades. ECT differs fundamentally from
many other medical imaging modalities in that it produces
a mapping of physiological functions as opposed to imag-
ing anatomical structure. Tomographic radiopharmaceutical
imaging, or ECT, provides in vivo three-dimensional maps of
a pharmaceutical labeled with a gamma ray emitting radio-
nuclide.The distribution of radionuclide concentrations ises-
timated from a set of projectional images acquired at many
different angles around the patient. In this work, two different
imagemodalities will be used: positron emission tomography
(PET) and single photon emission computed tomography
(SPECT).

Positron emission tomography (PET) is noninvasive,
nuclear medicine imaging technique which produces a three-
dimensional image of functional processes in the body. The
system detects pairs of gamma rays emitted indirectly by a
positron-emitting radionuclide (tracer), which is introduced
into the body on a biologically active molecule. When the
tracer is 18F-Fluorodeoxyglucose (F-FDG), its concentra-
tion gives us information about tissue metabolic activity,
measuring the brain’s rate of glucose metabolism. Images of

tracer concentration in 3-dimensional space within the brain
are then reconstructed by computer analysis.

On the other hand, SPECT is a widely used technique
to study the functional properties of the brain. SPECT brain
imaging techniques employ radioisotopes which decay emit-
ting predominantly a single gamma photon. When the
nucleus of a radioisotope disintegrates, a gamma photon is
emitted with a random direction which is uniformly distri-
buted in the sphere surrounding the nucleus. If the photon
is unimpeded by a collision with electrons or other particles
within the body, its trajectory will be a straight line or “ray.”
In order for a photon detector external to the patient to dis-
criminate the direction that a ray came from, a physical col-
limation is required. Typically, lead collimator plates are
placed prior to the detector’s crystal in such amanner that the
photons coming from all but a single direction are blocked by
the plates.This guarantees that only photons coming from the
desired direction will strike the photon detector.

After image acquisition, when filtering and reconstruc-
tion are done, some additional preprocessing steps are needed
before using functional brain images for computer aided
diagnosis systems.The differences between brains of different
subjects require the normalization of the images with respect
to a reference template [1]. Image normalization allows to
perform voxel-to-voxel comparison between same regions
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of different images [2, 3]. The general affine model with 12
parameters is usually chosen as a first normalization proced-
ure before to proceed with a more complex nonrigid spatial
transformation model [4–7]. Affine registration of tomogra-
phy brain images is a very important task in biomedical image
analysis [8–10].

Themethods and approaches presented in this work have
been motivated in the context of fusion of PET/MRI images.
While the authors were developing a software for fusion of
brain images, they were working under some hypothesis to
render practical the requirements this software would then
be used for: (i) using only affine registration because other
nonlinear registrationmethods could possibly produce unde-
sirable warping effects due to the intrasubject, intermodality
nature of the registration problem studied in this work; (ii)
providing reliability and robustness and increasing the con-
vergence rate of the algorithms as far as possible; (iii) using
the same anatomical brain image as a reference template
for each image. This latter point was motivated by pract-
ical purposes as the registration method proposed here was
developed in the context of a real application of brain image
fusion of PET/MRI. Furthermore, the proposed methodol-
ogy has been also tested in fusion of SPECT/MRI images.
Therefore, the goal is to register the functional brain images
(PET or SPECT) to the anatomical Magnetic Resonance
Imaging (MRI).

In this work, a histogram equalization of the original tom-
ography brain image is performed. We enhance the contrast
of images by transforming the intensity values in the image,
so that the histogram of the output image approximately
matches the histogram of the reference template. Experimen-
tal results using positron emission tomography and single
photon emission computed tomography brain images show
that the preprocessing of these images using histogram equa-
lization improves the convergence rate of the affine registra-
tion algorithm.

This paper is organised as follows. Section 2 introduces
the SPECT and PET database used in this work; it also states
the image registration problem expressed by a matrix multi-
plication and theGauss-Newton optimization algorithmused
to estimate the affine parameters. This section also presents
the preprocessing step of the intensity values using histogram
matching. In Section 3, the results are discussed. Lastly, in
Section 4, the conclusions are given.

2. Materials and Methods

2.1. SPECT Database. The SPECT database is from a current
study of the Alzheimer’s disease performed by the “Virgen
de las Nieves” Hospital in Granada (Spain). In this work, we
choose 50 images labelled by experts as Normal Controls,
although the results presented here do not change if brain
images labelled as late Alzheimer’s disease subjects are cho-
sen.

The patients were injected with a gamma emitting 99mTc-
ECD radiopharmaceutical, and the SPECT raw data was
acquired by a three-head gamma camera. A total of 180
projections were taken for each patient with a 2-degree ang-
ular resolution. The images of the brain cross-sections were

reconstructed from the projection data using the filtered
backprojection (FBP) algorithm in combination with a But-
terworth noise removal filter [11–14].

2.2. PET Database. PET images used in the preparation of
this work were obtained from the Alzheimer’s Disease Neu-
roimaging Initiative (ADNI) database (http://www.loni.ucla
.edu/ADNI).TheADNIwas launched in 2003 by theNational
Institute onAging (NIA), theNational Institute of Biomedical
Imaging and Bioengineering (NIBIB), the Food and Drug
Administration (FDA), private pharmaceutical companies,
and nonprofit organizations, as a 60-million, 5-year public-
private partnership. The primary goal of ADNI has been
to test whether serial magnetic resonance imaging (MRI),
positron emission tomography (PET), other biological mark-
ers, and clinical and neuropsychological assessment can be
combined to measure the progression of mild cognitive
impairment (MCI) and early Alzheimer’s disease (AD).
Determination of sensitive and specific markers of very early
AD progression is intended to aid researchers and clinicians
to develop new treatments andmonitor their effectiveness, as
well as lessen the time and cost of clinical trials.

The Principle Investigator of this initiative is Michael
W. Weiner, MD degree, VA Medical Center and University
of California, San Francisco. ADNI is the result of efforts
of many coinvestigators from a broad range of academic
institutions and private corporations, and subjects have been
recruited from over 50 sites across the US and Canada. The
initial goal of ADNI was to recruit 800 adults, ages 55 to 90,
to participate in the research—approximately 200 cognitively
normal older individuals to be followed for 3 years, 400
people with MCI to be followed for 3 years, and 200 people
with early AD to be followed for 2 years.

FDG-PET scans were acquired according to a stand-
ardized protocol. A 30-minute dynamic emission scan, con-
sisting of 6 5-minute frames, was acquired starting from 30
minutes and after the intravenous injection of 5.0–0.5mCi of
18F-FDG, as the subjects, who were instructed to fast for at
least 4 h prior to the scan and lay quietly in a dimly lit room
with their eyes open and minimal sensory stimulation. Data
were corrected for radiation-attenuation and scatter using
transmission scans from Ge-68 rotating rod sources and
reconstructed using measured attenuation correction and
image reconstruction algorithms specified for each scanner
(http://www.loni.ucla.edu/ADNI/Data/ADNI Data.shtml).
Following the scan, each image was reviewed for possible
artifacts at the University of Michigan, and all raw and
processed study data was archived.

2.3. Brain Affine Registration. An affine transformationmaps
from position x in one image to y in another via matrix M,
where the 12 matrix 𝑚
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The goal of the affine image registration is to find the 12
components m of the matrix M describing a transformation
that best matches both images (the source and the template)
together.

The affine transformation is parametrized by 12 parame-
ters.𝑚

11
,𝑚
22
,𝑚
33
model zooms of the original image. These

parameters allow us to scale the medical image. For example,
if𝑚
11
> 1, the transformed image is greater than the original

one in the 𝑥-axis. A zoom in the image is desirable when the
image and template do not have the same size. Translations in
𝑥-,𝑦-, or 𝑧-axis are parametrized by the component𝑚

14
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,
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34
, respectively, and provide amanner to center the image

and the template. Shears are modeled by the nondiagonal
elements of the matrix (𝑚
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32
).

Figure 1 shows the effects produced by different elementary
2-D affine transformations in a transaxial 2D slice MRI
image. Left image is a random 2-D transaxial slice. Figures
1(a), 1(b), and 1(c) show the effects produced by changes in
the diagonal elements in the 2-D affine matrix: balanced
diagonal elements result in global rescaling (Figure 1(a));
unbalanced diagonal elements produce anisotropic rescaling
along the 𝑦-axis (Figure 1(b)) or the 𝑥-axis (Figure 1(c)).
Some specific relations between off-diagonal elements in the
matrix produce rotations (Figure 1(d)), and, lastly, Figure 1(e)
depicts the effects of an unbalance change in the off-diagonal
elements resulting in shears along one of the two axes.

Before the application of an affine transformation to the
original functional image, it is convenient to smooth the
source image to improve accuracy [15].This step decreases the
number of potential local minima in the optimization task.
On the other hand, the intensity values in the original image
are referred to the center of the voxels. After the application of
an affine transformation to an image, the centers of the voxels
of the image rarely are placed in the centers of the voxels in
the transformed image. Therefore, interpolation is needed in
order to estimate the intensity value in the center of the voxels
for the transformed image [16, 17].

2.4. Gauss-Newton Optimization Algorithm. The parameters
m can be estimated by minimizing given cost function. The
cost function (cf) is chosen as the mean squared difference
between the images as follows:

cf = ∑
𝑖

𝑏
𝑖
(m)2 = ∑

𝑖

(𝑓 (Mx
𝑖
) − 𝑔 (x

𝑖
))
2

, (2)

where 𝑓 denotes the source image and 𝑔 the template. In this
work, the Gauss-Newton algorithm is used to estimate the
matrix components inM by finding the minimum of the cost
function cf.

The Gauss-Newton algorithm (GN) can be viewed as a
modification of Newton’s method with line search [18]. It is
an iterative procedure which allows to find the minimum of
a sum of squares. Starting with an initial guess m0, at each
iteration, the value ofm is updated using the following rule:

m𝑡+1 = m𝑡 + 𝛿 (3)

with 𝛿 satisfying the equation

(JTJ) 𝛿 = −JTb, (4)

(a) (b) (c)

(d) (e)

Figure 1: Left image: original MRI brain transaxial image. (a) Bal-
anced diagonal elements result in global rescaling. (b) Unbalanced
diagonal elements produce anisotropic rescaling along the 𝑦-axis.
(c) Unbalanced diagonal elements produce anisotropic rescaling
along the 𝑥-axis. (d) Specific balanced relations between off-
diagonal elements in thematrix produce rotations. (e) An unbalance
change in the off-diagonal elements resulting in shears along one of
the two axes.

where b is the vector of functions 𝑏
𝑖
and J is the Jacobian

matrix of b with respect tom evaluated atm𝑡. This optimiza-
tion method is like Newton’s method with line search, but in
that case, the Hessian is approximated using

∇
2
𝑓
𝑘
≈ JTJ. (5)

This choice avoids the computation of the individualHessians
of the residuals which sometimes can be difficult to compute.

2.5. Histogram Equalization. Histogrammatching is a proce-
dure where a series of histogram-equalization steps is used
to obtain an image with a histogram, that is, close to a pre-
specified histogram.

Suppose that the desired or specified normalized his-
togram is 𝑝

𝑑
(𝑡), with the desired image being represented as

𝑑, having the normalized gray levels 𝑡 = 0, 1, 2, . . . , 𝐿−1. Now,
the given image 𝑓 with the PDF 𝑝

𝑓
(𝑟) may be histogram-

equalized by the transformation

𝐶
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0

𝑝
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(𝑤) 𝑑𝑤; 0 ≤ 𝑟 ≤ 1. (6)

We may also derive a histogram-equalizing transform for the
desired (but as yet unavailable) image as

𝐶
2
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𝑡

0
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(𝑤) 𝑑𝑤; 0 ≤ 𝑡 ≤ 1. (7)

Observe that, in order to derive a histogram-equalizing
transform,we need only the PDFof the image; the image itself
is not needed.

When you supply a desired histogram, mathematically
histogram equalization consists of choosing the grayscale
transformation T to minimize
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where 𝐶
2
is the cumulative histogram of the reference image

(the desired image represented as 𝑑), and𝐶
1
is the cumulative
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Figure 2: (a) Reference PET template. (b) Source PET brain image. (c) Source image normalized to the greater value of reference PET
template. (d) Enhanced image using histogram matching.

sum of the image 𝑓 for all intensities 𝑡. This minimization
is subject to the constraints that T must be monotonic and
𝐶
1
(T(𝑎)) cannot overshoot 𝐶

2
(𝑎) by more than half the dis-

tance between the histogram counts at a given intensity value
𝑎. Then, the transformation T will be used to map the gray
levels in the image 𝑓 (or the colormap) to their new values.

Figure 2 depicts four different brain PET images and their
histograms. Figure 2(a) is a reference PET image. Figure 2(b)
shows a random transaxial 2-D PET image as it is obtained
after reconstruction. Figure 2(c) shows a version of the same
source PET image but with a dynamic range expansion to
the same interval as the reference image ([0 1]). Figure 2(d)
shows the source image after the application of a histogram
matching procedure using the histogram of the reference
image in Figure 2(a) as a prespecified histogram. Let us see
that in that case, both images (in Figures 2(a) and 2(d)) and
their histograms are very similar.

2.6. Summary. The procedure we follow to preprocess the
functional brain images before to proceed with an affine
registration to a template is summarized in this subsection.

(i) Firstly, we apply a mask in the source images and
we consider only those voxels with intensity values
greater than a given threshold.This step is done to dis-
card those voxels in the image outside the brain.

(ii) Secondly, we calculate the histogram of the template
image.

(iii) Then, we perform histogram matching and we adjust
the intensity values in the source images to the inten-
sity of the reference template.

(iv) Lastly, we build a cost function (using the mean
squared difference between source image and refer-
ence template) and we estimate the 12 parameters of
the affine matrix using a Gauss-Newton optimization
procedure.

3. Results and Discussion

The proposed methodology has been tested for 50 different
SPECT and PET images. The images have been spatially
normalized to a common template using a general affine
model with 12 parameters.

In order to test the performance of the proposed method,
we estimate the 12 components of the affine matrix after
adjustment of the intensity of the images using histogram
matching. We also estimate the general affine transformation
matrix for the original images with intensity values expanded
from 0 to 1, which is the same range as the template image.
Therefore, this dataset is linearly normalized in intensity to
the maximum. We compare the results for these two datasets
by means of a plot of the mean normalized cost function
versus the number of iterations. The mean normalized cost
function for the transformed images is plotted in red using
dots in Figures 3 and 5. Let us note that this result cannot
be compared directly with the performance of the affine
registration optimization method using the original images
as the cost function (2) is intensity dependent. In order to
perform a fair comparison, the affine matrix calculated in
each iteration using the enhanced images is applied to the
original brain image.Then, the cost function is calculated and
plotted in blue squares (labelled as “histogram equalization”).
The latter can be directly compared to the values of the
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Figure 3: Circles: mean normalised cost function value of 50 images versus number of iterations for the original PET brain images with
intensity values expanded from 0 to 1. Rectangles: mean normalised cost function calculated applying the affine matrix calculated in each
iteration using the preprocessed PET images to the original brain PET images. Dotted red line: mean normalised cost function value of 50
images versus number of iterations for preprocessed images using histogram matching.
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Figure 4: (a) Four transaxial slices of mean of 50 original PET images and its histogram of intensity values. (b) Four transaxial cuts of the
reference template and the histogram of intensity values. (c) Four transaxial slices of mean of 50 preprocessed PET images using histogram
equalization.

normalized cost function in each iteration when the original
images are used (labelled as “original” and plotted with black
circles in Figures 3 and 5.

Figure 3 shows the mean normalised cost function value
versus the number of iterations when the proposed meth-
odology was tested using the PET database. The error bars
are calculated using the standard deviation. In that case, pre-
processing the images using histogram matching allows to
improve the convergence rate of the algorithm. Specifically,
images preprocessed using histogram equalization reach in
the sixth iteration the samemean normalized value of the cost
function as the original images in the ninth iteration which
means a significant reduction in the convergence rate.

Figure 4(a) shows four transaxial cuts of the mean PET
image after affine normalization used in this work and its cor-
responding histogram of intensity values. Figure 4(b) shows

the reference template which is used in this work, and Figure
4(c) depicts four transaxial cuts of the mean PET image
after affine normalization for the 50 PET images which were
preprocessed using histogram matching. In that case, both
the transaxial images and the histogram show that the inten-
sity values of the images are similar to the intensity values of
the image template in Figure 4(b).

Figure 5 shows the normalizedmean cost function versus
the number of iterations for 50 original SPECT brain images
(denoted by circles) and the same images preprocessed using
a histogram matching procedure to the reference template
(with squares). The error bars are calculated using the stand-
ard deviation. Analogously to the previous case, when PET
images were considered, this plot has been calculated apply-
ing the affine matrix estimated in each iteration using the
preprocessed images to the original brain SPECT images.
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Figure 5: Circles: mean normalised cost function value of 50 images versus number of iterations for the original SPECT brain images with
intensity values expanded from 0 to 1. Rectangles: mean normalised cost function calculated applying the affine matrix calculated in each
iteration using the preprocessed SPECT images to the original brain SPECT images. Dotted red line: mean normalised cost function value of
50 images versus number of iterations for preprocessed images using histogram matching.
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Figure 6: (a) Four transaxial slices of mean of 50 original SPECT images and its histogram of intensity values. (b) Four transaxial cuts of the
reference template and the histogram of intensity values. (c) Four transaxial slices of mean of 50 preprocessed SPECT images using histogram
matching.

Furthermore, as in Figure 3, the red dotted line is the mean
normalised cost function for the preprocessed images using
histogrammatching.The figure shows that preprocessing the
images leads to an improvement of the convergence rate.
Specifically, the algorithm reaches in only four iterations a
normalised cost function value very similar to the value
which is obtained using the original SPECT images in the
eighth iteration. When the number of iterations is greater
than 8, enhanced images obtain a mean value of the nor-
malized cost function slightly greater than using the original
images. Nevertheless, the proposed method is also useful
for practical purposes in that case. For instance, histogram
adjustment of original images can be used to estimate the
affine transformation matrix up to the fourth iteration, and
then this estimate can be used as initial guess m0 in the
Gauss-Newton optimization algorithm to calculate the 12
affine parameters using the original images.

Figure 6(a) depicts four transaxial brain images showing
themean after affine registration of 50 SPECT images consid-
ered in this work. The same is shown for the reference tem-
plate, and let us note that Figures 6(b) and 4(b) are the same,
as the same reference brain template image was used for the
affine registration of the SPECT and PET images. Figure 6(c)
depicts four transaxial brain cuts with transformed inten-
sity values using histogram matching. Analogously to the
case inwhich PET images were considered, Figure 6(c) shows
that after histogram transformation, both the images and the
histogram of intensity values are quite similar to the template
in Figure 6(b).

In this work, histogram matching is used as a useful tool
which is able to increase the convergence rate of affine trans-
formation methods widely used in the literature. Histogram
equalization is a common procedure which is usually used to
enhance contrast in image processing. We have shown that
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this approach can be used in the context of affine registration
of brain images, specifically when the intensity values of the
reference template differ from the source image which is the
case in intermodality image fusion of brain images. Specifi-
cally, in this work, the convergence rate of the affine registra-
tion using Gauss-Newton optimization algorithm has been
compared using 50 PET and 50 SPECT images. When the
images were preprocessed using histogram matching (using
the histogram of the template image as prespecified desired
histogram), the convergence rate of the algorithm has been
improved.

4. Conclusion

In this work, a procedure to improve the convergence rate in
the context of affine registration of tomography brain images
has been presented.The proposedmethodology is based on a
histogrammatching; the intensity values in the original image
are preadjusted using the information of the histogram of
the reference template.This intensity normalization has been
tested on different imaging modalities: single photon emis-
sion computed tomography and positron emission tomog-
raphy. This approach has been shown to improve the con-
vergence rate of the affine registration of tomography brain
images specially when there is a great difference between
intensity values of the reference template and the images.
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